Should You Consider a Satellite Internet Service Provider?

Should You Consider a Satellite Internet Service Provider?

broadband providers with live chat support

What is Satellite Internet and How Does It Work?


Satellite internet, now thats a pretty cool thing! IT services in sydney . Its like having the entire internet beamed down from space, right above your head! Well, not exactly above your head, but it does feel like it sometimes. So, what is it really? Its a form of internet connectivity that uses satellites orbiting the Earth to provide internet access to remote areas where traditional cable or fiber networks just cant reach. Yeah, you got that right!


Now, how does it work? Well, imagine you have a magical dish on your roof (thats not so magical, but hey, it helps with the visualization)! This dish, known as a parabolic antenna, is your connection point to the satellite. When you make a request to access the internet, your data is sent up to the satellite via this dish. The satellite then relays your request to a network operations center on the ground, which processes your request and sends the requested data back up to the satellite. Finally, the satellite beams the data back down to your dish, and voila, youve got internet access! Its like a cosmic game of telephone, but with data packets!


But heres the thing, its not all sunshine and rainbows. Satellite internet can be slower than traditional broadband, and the signal can get a bit shaky when the satellite moves or when theres bad weather. Plus, its not exactly the most budget-friendly option out there. But hey, if you live in a remote area where nothing else works, it can be a lifesaver!


So, should you consider a satellite internet service provider? Well, that depends on your situation. If youre in an area with no other internet options, and the cost is manageable for you, then why not give it a shot? Just remember, its not the fastest or cheapest option, but it can be a pretty good alternative when youre stuck in a not-so-connected corner of the world!

Pros and Cons of Satellite Internet Service


Hey there! So, youre thinking about switching to satellite internet, huh? Well, its a big decision, and like most things in life, it comes with its pros and cons. Lets dive into it, shall we?


First off, the pros! One major perk is that satellite internet can reach areas where traditional internet services dont even think about showing up. So, if you live in a remote cabin or a rural area, you might finally have some options! Plus, the speeds havent been half-bad in recent years. Theyve come a long way from the days when dial-up was the only other option.


But now, the not-so-fun stuff. The biggest con is probably the cost. Satellite internet can be a real money drain. Not just in the monthly fees, but also in the upfront equipment costs. Youre looking at a hefty price tag there. And dont even get me started on the weather. Rain, snow, and clouds can really mess with your connection. Its like playing a never-ending game of hide-and-seek with your internet provider.


Another thing to consider is the latency. You know, the lag that can make gaming feel like youre playing in another galaxy. Its not ideal for those who rely on their internet for real-time communication or online gaming. Oh, and lets not forget about the installation process. Its not a quick and easy setup like plugging in a cable.


In the end, it all depends on your specific needs and circumstances. If youre in a remote area and can afford the cost, it might be worth it.

Should You Consider a Satellite Internet Service Provider? - ultra-fast broadband providers

  1. broadband providers with live chat support
  2. ultra-fast broadband providers
  3. internet plans with easy setup
But if you can get reliable internet through other means, you might want to stick with that. You dont want to feel like youre living in a digital black hole, after all!

Who is Satellite Internet Best Suited For?


When thinking about satellite internet, it's important to consider who it's really best suited for. You might be surprised to learn that this type of service isn't for everyone, but it can be a game changer for certain folks! So, let's dive in.


First off, if you live in a remote area where traditional cable or fiber options aren't available, satellite internet could be your saving grace. Many rural communities don't have access to high-speed broadband, and that's where satellite comes in handy. It's often the only option for people who want to get online without having to drive miles to find a decent connection.


However, it's not just about location. If you're someone who enjoys streaming movies and playing online games, you might want to think twice before jumping in. Satellite internet usually has higher latency and lower speeds compared to other options. So, it's not ideal for heavy users who need a fast and reliable connection. But, if you're just browsing the web, checking emails or doing light work, it could do the trick!


Another important factor is the cost. Satellite services can be pricier than other types of internet, and there's often a data cap to keep in mind. If you're on a budget or use a lot of data, it might not be the best fit for you. On the flip side, if you don't mind paying a little extra for the convenience of getting online from almost anywhere, then it might just be worth it.


In conclusion, satellite internet can be a fantastic option for those living in remote areas, or for those who don't have many other choices. But, it's not without its downsides. So, before you make a decision, think about your internet needs and usage. You don't wanna end up with something that doesn't meet your expectations!

Key Factors to Consider Before Choosing a Provider


When it comes to picking a satellite internet service provider, there are definitely some key factors to think about. First off, you gotta consider the speed and reliability of the service. It's no good having a super fast connection if it drops out all the time, right? You'll wanna check the maximum speeds they offer and see if they can actually deliver on those promises. Also, don't forget to look into latency. Satellite internet can sometimes have a higher latency than other options, which can be a bummer for gamers or anyone who needs real-time connections.


Another thing to ponder is the data caps. Some providers might lure you in with great initial pricing, but if they throttle your speeds after a certain amount of data, it could really ruin your experience! Make sure you know what the limits are and if they're reasonable for your usage.


Cost is obviously a huge factor, too. You might find some providers with low monthly rates, but then, there are installation fees and equipment rentals that can add up. So, it's essential to do a bit of math and calculate the total cost of ownership over a year or two instead of just looking at that monthly bill.


Customer support is something you shouldn't overlook either. You don't want to be stuck with a service that doesn't have your back when issues arise. Check for reviews or testimonials to see what others have experienced. It's always better to have a provider that's responsive and helpful!


Lastly, consider the contract terms. Some providers might lock you in for a long time, while others offer more flexible options. If you're not sure about committing, a month-to-month plan might be the best route to take.


In conclusion, choosing the right satellite internet service provider isn't something to take lightly. By considering these factors, you can make a more informed decision and hopefully avoid any regrets down the line!

Top Satellite Internet Service Providers


When it comes to choosing a satellite internet service provider, its important to do your homework. There are some top contenders out there, but not all of them are created equal. First off, you shouldnt overlook Viasat. Theyve been around for a long time and have a solid reputation. Viasat offers pretty good speeds and their customer service, though not perfect, is often praised for being helpful.


Now, you might think HughesNet is just a copycat, but theyve got their own unique selling points. HughesNet is known for its reliability, especially in rural areas where other options are scarce. Theyve also introduced some cool new features recently, which makes them a strong competitor.


But wait, what about Dish Network? Theyre new to the game, but theyre making waves. Dish Networks speed offerings are impressive, sometimes even better than Viasats. Plus, their pricing is competitive, which is a big plus if youre on a tight budget.


Theres also OneWeb, though theyre still working on rolling out their full service. They promise lightning-fast speeds and low latency, which would be a game changer. But for now, theyre not available everywhere, so you might have to wait a bit.


So, should you consider a satellite internet service provider? Well, it depends on your needs. If you live in an area where traditional internet is nonexistent, then absolutely! These providers are a lifeline. But if youre in a more populated area with options like cable or fiber, you might want to hold off. Its not that satellite internet is bad; its just that other services might be more suited to your specific needs.


In the end, dont rush into a decision. Take your time to compare plans, read reviews, and maybe even talk to a few customers. Its a big investment, after all!

Comparing Satellite Internet to Other Internet Options


When it comes to choosing an internet service provider, many folks find themselves in a bit of a pickle-especially if theyre considering satellite internet. So, should you really think about going with a satellite option? Well, let's compare it to other internet choices out there!


First off, satellite internet can seem like a lifeline for people living in rural areas where traditional cable or fiber connections just arent available. It can reach those remote spots where other services might not go, which is definitely a plus! But, hold on a second! Satellite internet often comes with its own set of challenges. For instance, the speeds can be slower than what youd get with fiber or cable. Plus, there's usually a bit of latency (or lag), which can make online gaming or video calls a bit of a hassle. You wouldn't want to be in the middle of a game and have your connection drop, right?


Now, let's talk about costs. Satellite providers often charge higher prices compared to DSL or cable options. You might think youre getting a deal, but once you add up the equipment fees and other hidden charges, it can end up costing you more than expected! Ouch! On the other hand, if youre in an area where other ISPs just won't go, satellite might be your only choice.


Another thing to consider is data limits. Many satellite plans come with strict data caps, which can be a real bummer if you're someone who streams a lot of movies or downloads large files. Unlike some cable or fiber options that offer unlimited data, satellite internet might just leave you feeling restricted.


In conclusion, while satellite internet has its advantages, like accessibility in hard-to-reach places, it also has significant drawbacks that can't be ignored. It's important to weigh these factors against other options available in your area. So, before you make that leap into satellite internet, do your homework and see if it really meets your needs! You might just find that another option suits you better!

Installation and Equipment: What to Expect


So youre thinking about switching to satellite internet? Well, hold onto your hats! Its definitely an option worth considering, especially if you live in areas with poor or no service from traditional providers. But before you dive into it, there are a few things you gotta think about.


First off, the installation process can be a bit different (and sometimes more complicated) than what you might be used to with cable or DSL. They gotta set up a dish on your roof that points directly at the satellites orbiting the Earth. Its not rocket science, but it aint exactly plug-and-play either.

Should You Consider a Satellite Internet Service Provider? - ultra-fast broadband providers

  1. best business internet deals
  2. fibre internet for gated communities
  3. internet services with built-in security features in Perth
Plus, they need to make sure the dish has a clear view of the sky, which means no trees or buildings blocking its path.


Now, when it comes to equipment, you wont just be getting a modem like with most other services. The dish I mentioned is a big part of it, and its not exactly small or light.

Should You Consider a Satellite Internet Service Provider? - broadband providers with live chat support

  1. best VoIP providers for startups
  2. telecom infrastructure providers
  3. custom internet solutions for MDUs
So you gotta be prepared for some heavy lifting or have someone come out to help you install it. And dont forget about the actual modem and receiver inside your house. These arent your usual routers either, so you gotta get familiar with them.


Speeds can vary too, and while theyve come a long way in recent years, they still might not be as fast as youre accustomed to. Latency can also be a bit higher since the signals have to travel all the way up to the satellite and back down again. But hey, at least you wont have to deal with the frustrating bufferings and dropped connections that can sometimes plague satellite internet!


Cost is another factor. While it might seem pricey upfront, remember that youre getting coverage where others cant. Theres usually a one-time installation fee, monthly service charges, and you might even have to pay for equipment rental. On the bright side though, if youre tired of paying through the nose for slow or unreliable internet, it could be worth every penny.


Lastly, theres the reliability issue. Dont get me wrong, modern satellite services are much better than they used to be. But theres still a chance of outages due to weather conditions like heavy rain or snow. And lets not forget about the occasional glitch caused by the dish losing its lock on the satellite.


All in all, satellite internet isnt for everyone. If youre in an area without other options, though, it might be the best choice youve got. Just make sure youre ready for the installation and additional equipment, and be aware that you might not get the fastest speeds around. But hey, if you cant get reliable internet otherwise, its still better than nothing, right?

Citations and other links

The background of the Net came from the initiatives of researchers and engineers to develop and adjoin local area network. The Web Procedure Suite, the set of guidelines used to communicate between networks and devices online, developed from research and development in the United States and involved international cooperation, specifically with scientists in the United Kingdom and France. Computer technology was an emerging self-control in the late 1950s that started to think about time-sharing in between computer system customers, and later on, the opportunity of accomplishing this over wide location networks. J. C. R. Licklider developed the idea of an universal network at the Data processing Techniques Workplace (IPTO) of the USA Division of Defense (DoD) Advanced Research Projects Company (ARPA). Separately, Paul Baran at the RAND Firm proposed a distributed network based upon data in message obstructs in the very early 1960s, and Donald Davies conceived of packet switching in 1965 at the National Physical Laboratory (NPL), recommending a nationwide business information network in the UK. ARPA awarded contracts in 1969 for the advancement of the ARPANET job, directed by Robert Taylor and handled by Lawrence Roberts. ARPANET took on the package changing innovation suggested by Davies and Baran. The network of User interface Message Processors (IMPs) was constructed by a group at Screw, Beranek, and Newman, with the style and requirements led by Bob Kahn. The host-to-host procedure was defined by a team of graduate students at UCLA, led by Steve Crocker, together with Jon Postel and others. The ARPANET broadened quickly across the United States with connections to the UK and Norway. Several very early packet-switched networks emerged in the 1970s which looked into and gave data networking. Louis Pouzin and Hubert Zimmermann originated a simplified end-to-end strategy to internetworking at the IRIA. Peter Kirstein placed internetworking into practice at University University London in 1973. Bob Metcalfe developed the theory behind Ethernet and the PARC Universal Packet. ARPA efforts and the International Network Working Team created and fine-tuned concepts for internetworking, in which numerous different networks might be joined right into a network of networks. Vint Cerf, currently at Stanford College, and Bob Kahn, now at DARPA, released their research study on internetworking in 1974. Through the Web Experiment Keep in mind series and later RFCs this advanced into the Transmission Control Method (TCP) and Web Method (IP), 2 procedures of the Web procedure collection. The design included principles originated in the French CYCLADES project directed by Louis Pouzin. The advancement of package switching networks was underpinned by mathematical operate in the 1970s by Leonard Kleinrock at UCLA. In the late 1970s, national and worldwide public information networks emerged based on the X. 25 procedure, designed by Rémi Després and others. In the United States, the National Science Foundation (NSF) financed nationwide supercomputing centers at a number of universities in the United States, and offered interconnectivity in 1986 with the NSFNET job, hence developing network access to these supercomputer sites for research and academic organizations in the United States.International connections to NSFNET, the appearance of architecture such as the Domain System, and the fostering of TCP/IP on existing networks in the United States and around the world noted the starts of the Internet. Industrial Access provider (ISPs) arised in 1989 in the United States and Australia. Limited private links to parts of the Web by officially commercial entities emerged in a number of American cities by late 1989 and 1990. The optical foundation of the NSFNET was decommissioned in 1995, getting rid of the last constraints on making use of the Internet to bring business web traffic, as traffic transitioned to optical networks handled by Sprint, MCI and AT&T in the USA. Study at CERN in Switzerland by the British computer system researcher Tim Berners-Lee in 1989–-- 90 caused the World Wide Web, linking hypertext files into an information system, available from any node on the network. The significant growth of the capability of the Web, allowed by the development of wave department multiplexing (WDM) and the rollout of fiber optic cable televisions in the mid-1990s, had a revolutionary impact on culture, business, and technology. This enabled the rise of near-instant interaction by electronic mail, instantaneous messaging, voice over Web Protocol (VoIP) phone conversation, video chat, and the Net with its discussion forums, blogs, social networking services, and online buying websites. Increasing quantities of data are sent at higher and greater rates over fiber-optic networks operating at 1 Gbit/s, 10 Gbit/s, and 800 Gbit/s by 2019. The Internet's requisition of the worldwide interaction landscape was rapid in historic terms: it only communicated 1% of the details flowing with two-way telecommunications networks in the year 1993, 51% by 2000, and greater than 97% of the telecommunicated information by 2007. The Net continues to grow, driven by ever before higher quantities of on-line details, business, home entertainment, and social networking solutions. Nevertheless, the future of the worldwide network may be formed by local distinctions.

.
Internet history timeline

Early research and development:

Merging the networks and creating the Internet:

Commercialization, privatization, broader access leads to the modern Internet:

Examples of Internet services:

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information. IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.

The first major version of IP, Internet Protocol version 4 (IPv4), is the dominant protocol of the Internet. Its successor is Internet Protocol version 6 (IPv6), which has been in increasing deployment on the public Internet since around 2006.[1]

Function

[edit]
Encapsulation of application data carried by UDP to a link protocol frame

The Internet Protocol is responsible for addressing host interfaces, encapsulating data into datagrams (including fragmentation and reassembly) and routing datagrams from a source host interface to a destination host interface across one or more IP networks.[2] For these purposes, the Internet Protocol defines the format of packets and provides an addressing system.

Each datagram has two components: a header and a payload. The IP header includes a source IP address, a destination IP address, and other metadata needed to route and deliver the datagram. The payload is the data that is transported. This method of nesting the data payload in a packet with a header is called encapsulation.

IP addressing entails the assignment of IP addresses and associated parameters to host interfaces. The address space is divided into subnets, involving the designation of network prefixes. IP routing is performed by all hosts, as well as routers, whose main function is to transport packets across network boundaries. Routers communicate with one another via specially designed routing protocols, either interior gateway protocols or exterior gateway protocols, as needed for the topology of the network.[3]

Addressing methods

[edit]
Routing schemes
Unicast

Broadcast

Multicast

Anycast

There are four principal addressing methods in the Internet Protocol:

  • Unicast delivers a message to a single specific node using a one-to-one association between a sender and destination: each destination address uniquely identifies a single receiver endpoint.
  • Broadcast delivers a message to all nodes in the network using a one-to-all association; a single datagram (or packet) from one sender is routed to all of the possibly multiple endpoints associated with the broadcast address. The network automatically replicates datagrams as needed to reach all the recipients within the scope of the broadcast, which is generally an entire network subnet.
  • Multicast delivers a message to a group of nodes that have expressed interest in receiving the message using a one-to-many-of-many or many-to-many-of-many association; datagrams are routed simultaneously in a single transmission to many recipients. Multicast differs from broadcast in that the destination address designates a subset, not necessarily all, of the accessible nodes.
  • Anycast delivers a message to any one out of a group of nodes, typically the one nearest to the source using a one-to-one-of-many[4] association where datagrams are routed to any single member of a group of potential receivers that are all identified by the same destination address. The routing algorithm selects the single receiver from the group based on which is the nearest according to some distance or cost measure.

Version history

[edit]
A timeline for the development of the transmission control Protocol TCP and Internet Protocol IP
First Internet demonstration, linking the ARPANET, PRNET, and SATNET on November 22, 1977

In May 1974, the Institute of Electrical and Electronics Engineers (IEEE) published a paper entitled "A Protocol for Packet Network Intercommunication".[5] The paper's authors, Vint Cerf and Bob Kahn, described an internetworking protocol for sharing resources using packet switching among network nodes. A central control component of this model was the Transmission Control Program that incorporated both connection-oriented links and datagram services between hosts. The monolithic Transmission Control Program was later divided into a modular architecture consisting of the Transmission Control Protocol and User Datagram Protocol at the transport layer and the Internet Protocol at the internet layer. The model became known as the Department of Defense (DoD) Internet Model and Internet protocol suite, and informally as TCP/IP.

The following Internet Experiment Note (IEN) documents describe the evolution of the Internet Protocol into the modern version of IPv4:[6]

  • IEN 2 Comments on Internet Protocol and TCP (August 1977) describes the need to separate the TCP and Internet Protocol functionalities (which were previously combined). It proposes the first version of the IP header, using 0 for the version field.
  • IEN 26 A Proposed New Internet Header Format (February 1978) describes a version of the IP header that uses a 1-bit version field.
  • IEN 28 Draft Internetwork Protocol Description Version 2 (February 1978) describes IPv2.
  • IEN 41 Internetwork Protocol Specification Version 4 (June 1978) describes the first protocol to be called IPv4. The IP header is different from the modern IPv4 header.
  • IEN 44 Latest Header Formats (June 1978) describes another version of IPv4, also with a header different from the modern IPv4 header.
  • IEN 54 Internetwork Protocol Specification Version 4 (September 1978) is the first description of IPv4 using the header that would become standardized in 1980 as RFC 760.
  • IEN 80
  • IEN 111
  • IEN 123
  • IEN 128/RFC 760 (1980)

IP versions 1 to 3 were experimental versions, designed between 1973 and 1978.[7] Versions 2 and 3 supported variable-length addresses ranging between 1 and 16 octets (between 8 and 128 bits).[8] An early draft of version 4 supported variable-length addresses of up to 256 octets (up to 2048 bits)[9] but this was later abandoned in favor of a fixed-size 32-bit address in the final version of IPv4. This remains the dominant internetworking protocol in use in the Internet Layer; the number 4 identifies the protocol version, carried in every IP datagram. IPv4 is defined in

RFC 791 (1981).

Version number 5 was used by the Internet Stream Protocol, an experimental streaming protocol that was not adopted.[7]

The successor to IPv4 is IPv6. IPv6 was a result of several years of experimentation and dialog during which various protocol models were proposed, such as TP/IX (

RFC 1475), PIP (

RFC 1621) and TUBA (TCP and UDP with Bigger Addresses,

RFC 1347). Its most prominent difference from version 4 is the size of the addresses. While IPv4 uses 32 bits for addressing, yielding c. 4.3 billion (4.3×109) addresses, IPv6 uses 128-bit addresses providing c. 3.4×1038 addresses. Although adoption of IPv6 has been slow, as of January 2023, most countries in the world show significant adoption of IPv6,[10] with over 41% of Google's traffic being carried over IPv6 connections.[11]

The assignment of the new protocol as IPv6 was uncertain until due diligence assured that IPv6 had not been used previously.[12] Other Internet Layer protocols have been assigned version numbers,[13] such as 7 (IP/TX), 8 and 9 (historic). Notably, on April 1, 1994, the IETF published an April Fools' Day RfC about IPv9.[14] IPv9 was also used in an alternate proposed address space expansion called TUBA.[15] A 2004 Chinese proposal for an IPv9 protocol appears to be unrelated to all of these, and is not endorsed by the IETF.

IP version numbers

[edit]

As the version number is carried in a 4-bit field, only numbers 0–15 can be assigned.

IP version Description Year Status
0 Internet Protocol, pre-v4 N/A Reserved[16]
1 Experimental version 1973 Obsolete
2 Experimental version 1977 Obsolete
3 Experimental version 1978 Obsolete
4 Internet Protocol version 4 (IPv4)[17] 1981 Active
5 Internet Stream Protocol (ST) 1979 Obsolete; superseded by ST-II or ST2
Internet Stream Protocol (ST-II or ST2)[18] 1987 Obsolete; superseded by ST2+
Internet Stream Protocol (ST2+) 1995 Obsolete
6 Simple Internet Protocol (SIP) N/A Obsolete; merged into IPv6 in 1995[16]
Internet Protocol version 6 (IPv6)[19] 1995 Active
7 TP/IX The Next Internet (IPv7)[20] 1993 Obsolete[21]
8 P Internet Protocol (PIP)[22] 1994 Obsolete; merged into SIP in 1993
9 TCP and UDP over Bigger Addresses (TUBA) 1992 Obsolete[23]
IPv9 1994 April Fools' Day joke[24]
Chinese IPv9 2004 Abandoned
10–14 N/A N/A Unassigned
15 Version field sentinel value N/A Reserved

Reliability

[edit]

The design of the Internet protocol suite adheres to the end-to-end principle, a concept adapted from the CYCLADES project. Under the end-to-end principle, the network infrastructure is considered inherently unreliable at any single network element or transmission medium and is dynamic in terms of the availability of links and nodes. No central monitoring or performance measurement facility exists that tracks or maintains the state of the network. For the benefit of reducing network complexity, the intelligence in the network is located in the end nodes.

As a consequence of this design, the Internet Protocol only provides best-effort delivery and its service is characterized as unreliable. In network architectural parlance, it is a connectionless protocol, in contrast to connection-oriented communication. Various fault conditions may occur, such as data corruption, packet loss and duplication. Because routing is dynamic, meaning every packet is treated independently, and because the network maintains no state based on the path of prior packets, different packets may be routed to the same destination via different paths, resulting in out-of-order delivery to the receiver.

All fault conditions in the network must be detected and compensated by the participating end nodes. The upper layer protocols of the Internet protocol suite are responsible for resolving reliability issues. For example, a host may buffer network data to ensure correct ordering before the data is delivered to an application.

IPv4 provides safeguards to ensure that the header of an IP packet is error-free. A routing node discards packets that fail a header checksum test. Although the Internet Control Message Protocol (ICMP) provides notification of errors, a routing node is not required to notify either end node of errors. IPv6, by contrast, operates without header checksums, since current link layer technology is assumed to provide sufficient error detection.[25][26]

[edit]

The dynamic nature of the Internet and the diversity of its components provide no guarantee that any particular path is actually capable of, or suitable for, performing the data transmission requested. One of the technical constraints is the size of data packets possible on a given link. Facilities exist to examine the maximum transmission unit (MTU) size of the local link and Path MTU Discovery can be used for the entire intended path to the destination.[27]

The IPv4 internetworking layer automatically fragments a datagram into smaller units for transmission when the link MTU is exceeded. IP provides re-ordering of fragments received out of order.[28] An IPv6 network does not perform fragmentation in network elements, but requires end hosts and higher-layer protocols to avoid exceeding the path MTU.[29]

The Transmission Control Protocol (TCP) is an example of a protocol that adjusts its segment size to be smaller than the MTU. The User Datagram Protocol (UDP) and ICMP disregard MTU size, thereby forcing IP to fragment oversized datagrams.[30]

Security

[edit]

During the design phase of the ARPANET and the early Internet, the security aspects and needs of a public, international network were not adequately anticipated. Consequently, many Internet protocols exhibited vulnerabilities highlighted by network attacks and later security assessments. In 2008, a thorough security assessment and proposed mitigation of problems was published.[31] The IETF has been pursuing further studies.[32]

See also

[edit]

References

[edit]
  1. ^ The Economics of Transition to Internet Protocol version 6 (IPv6) (Report). OECD Digital Economy Papers. OECD. 2014-11-06. doi:10.1787/5jxt46d07bhc-en. Archived from the original on 2021-03-07. Retrieved 2020-12-04.
  2. ^ Charles M. Kozierok, The TCP/IP Guide, archived from the original on 2019-06-20, retrieved 2017-07-22
  3. ^ "IP Technologies and Migration — EITC". www.eitc.org. Archived from the original on 2021-01-05. Retrieved 2020-12-04.
  4. ^ GoÅ›cieÅ„, Róża; Walkowiak, Krzysztof; Klinkowski, MirosÅ‚aw (2015-03-14). "Tabu search algorithm for routing, modulation and spectrum allocation in elastic optical network with anycast and unicast traffic". Computer Networks. 79: 148–165. doi:10.1016/j.comnet.2014.12.004. ISSN 1389-1286.
  5. ^ Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. Archived (PDF) from the original on 2017-01-06. Retrieved 2020-04-06. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  6. ^ "Internet Experiment Note Index". www.rfc-editor.org. Retrieved 2024-01-21.
  7. ^ a b Stephen Coty (2011-02-11). "Where is IPv1, 2, 3, and 5?". Archived from the original on 2020-08-02. Retrieved 2020-03-25.
  8. ^ Postel, Jonathan B. (February 1978). "Draft Internetwork Protocol Specification Version 2" (PDF). RFC Editor. IEN 28. Retrieved 6 October 2022. Archived 16 May 2019 at the Wayback Machine
  9. ^ Postel, Jonathan B. (June 1978). "Internetwork Protocol Specification Version 4" (PDF). RFC Editor. IEN 41. Retrieved 11 February 2024. Archived 16 May 2019 at the Wayback Machine
  10. ^ Strowes, Stephen (4 Jun 2021). "IPv6 Adoption in 2021". RIPE Labs. Archived from the original on 2021-09-20. Retrieved 2021-09-20.
  11. ^ "IPv6". Google. Archived from the original on 2020-07-14. Retrieved 2023-05-19.
  12. ^ Mulligan, Geoff. "It was almost IPv7". O'Reilly. Archived from the original on 5 July 2015. Retrieved 4 July 2015.
  13. ^ "IP Version Numbers". Internet Assigned Numbers Authority. Archived from the original on 2019-01-18. Retrieved 2019-07-25.
  14. ^ RFC 1606: A Historical Perspective On The Usage Of IP Version 9. April 1, 1994.
  15. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. doi:10.17487/RFC1347. RFC 1347.
  16. ^ a b Jeff Doyle; Jennifer Carroll (2006). Routing TCP/IP. Vol. 1 (2 ed.). Cisco Press. p. 8. ISBN 978-1-58705-202-6.
  17. ^ Cite error: The named reference rfc791 was invoked but never defined (see the help page).
  18. ^ L. Delgrossi; L. Berger, eds. (August 1995). Internet Stream Protocol Version 2 (ST2) Protocol Specification - Version ST2+. Network Working Group. doi:10.17487/RFC1819. RFC 1819. Historic. Obsoletes RFC 1190 and IEN 119.
  19. ^ Cite error: The named reference rfc8200 was invoked but never defined (see the help page).
  20. ^ R. Ullmann (June 1993). TP/IX: The Next Internet. Network Working Group. doi:10.17487/RFC1475. RFC 1475. Historic. Obsoleted by RFC 6814.
  21. ^ C. Pignataro; F. Gont (November 2012). Formally Deprecating Some IPv4 Options. Internet Engineering Task Force. doi:10.17487/RFC6814. ISSN 2070-1721. RFC 6814. Proposed Standard. Obsoletes RFC 1385, 1393, 1475 and 1770.
  22. ^ P. Francis (May 1994). Pip Near-term Architecture. Network Working Group. doi:10.17487/RFC1621. RFC 1621. Historical.
  23. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. Network Working Group. doi:10.17487/RFC1347. RFC 1347. Historic.
  24. ^ J. Onions (1 April 1994). A Historical Perspective On The Usage Of IP Version 9. Network Working Group. doi:10.17487/RFC1606. RFC 1606. Informational. This is an April Fools' Day Request for Comments.
  25. ^ RFC 1726 section 6.2
  26. ^ RFC 2460
  27. ^ Rishabh, Anand (2012). Wireless Communication. S. Chand Publishing. ISBN 978-81-219-4055-9. Archived from the original on 2024-06-12. Retrieved 2020-12-11.
  28. ^ Siyan, Karanjit. Inside TCP/IP, New Riders Publishing, 1997. ISBN 1-56205-714-6
  29. ^ Bill Cerveny (2011-07-25). "IPv6 Fragmentation". Arbor Networks. Archived from the original on 2016-09-16. Retrieved 2016-09-10.
  30. ^ Parker, Don (2 November 2010). "Basic Journey of a Packet". Symantec. Symantec. Archived from the original on 20 January 2022. Retrieved 4 May 2014.
  31. ^ Fernando Gont (July 2008), Security Assessment of the Internet Protocol (PDF), CPNI, archived from the original (PDF) on 2010-02-11
  32. ^ F. Gont (July 2011). Security Assessment of the Internet Protocol version 4. doi:10.17487/RFC6274. RFC 6274.
[edit]

 

A mindmap of ICTs
Internet history timeline

Early research and development:

Merging the networks and creating the Internet:

Commercialization, privatization, broader access leads to the modern Internet:

Examples of Internet services:

Information and communications technology (ICT) is an extensional term for information technology (IT) that stresses the role of unified communications[1] and the integration of telecommunications (telephone lines and wireless signals) and computers, as well as necessary enterprise software, middleware, storage and audiovisual, that enable users to access, store, transmit, understand and manipulate information.

ICT is also used to refer to the convergence of audiovisuals and telephone networks with computer networks through a single cabling or link system. There are large economic incentives to merge the telephone networks with the computer network system using a single unified system of cabling, signal distribution, and management. ICT is an umbrella term that includes any communication device, encompassing radio, television, cell phones, computer and network hardware, satellite systems and so on, as well as the various services and appliances with them such as video conferencing and distance learning. ICT also includes analog technology, such as paper communication, and any mode that transmits communication.[2]

ICT is a broad subject and the concepts are evolving.[3] It covers any product that will store, retrieve, manipulate, process, transmit, or receive information electronically in a digital form (e.g., personal computers including smartphones, digital television, email, or robots). Skills Framework for the Information Age is one of many models for describing and managing competencies for ICT professionals in the 21st century.[4]

Etymology

[edit]

The phrase "information and communication technologies" has been used by academic researchers since the 1980s.[5] The abbreviation "ICT" became popular after it was used in a report to the UK government by Dennis Stevenson in 1997,[6] and then in the revised National Curriculum for England, Wales and Northern Ireland in 2000. However, in 2012, the Royal Society recommended that the use of the term "ICT" should be discontinued in British schools "as it has attracted too many negative connotations".[7] From 2014, the National Curriculum has used the word computing, which reflects the addition of computer programming into the curriculum.[8]

Variations of the phrase have spread worldwide. The United Nations has created a "United Nations Information and Communication Technologies Task Force" and an internal "Office of Information and Communications Technology".[9]

Monetization

[edit]

The money spent on IT worldwide has been estimated as US$3.8 trillion[10] in 2017 and has been growing at less than 5% per year since 2009. The estimated 2018 growth of the entire ICT is 5%. The biggest growth of 16% is expected in the area of new technologies (IoT, Robotics, AR/VR, and AI).[11]

The 2014 IT budget of the US federal government was nearly $82 billion.[12] IT costs, as a percentage of corporate revenue, have grown 50% since 2002, putting a strain on IT budgets. When looking at current companies' IT budgets, 75% are recurrent costs, used to "keep the lights on" in the IT department, and 25% are the cost of new initiatives for technology development.[13]

The average IT budget has the following breakdown:[13]

  • 34% personnel costs (internal), 31% after correction
  • 16% software costs (external/purchasing category), 29% after correction
  • 33% hardware costs (external/purchasing category), 26% after correction
  • 17% costs of external service providers (external/services), 14% after correction

The estimated amount of money spent in 2022 is just over US$6 trillion.[14]

Technological capacity

[edit]

The world's technological capacity to store information grew from 2.6 (optimally compressed) exabytes in 1986 to 15.8 in 1993, over 54.5 in 2000, and to 295 (optimally compressed) exabytes in 2007, and some 5 zettabytes in 2014.[15][16] This is the informational equivalent to 1.25 stacks of CD-ROM from the earth to the moon in 2007, and the equivalent of 4,500 stacks of printed books from the earth to the sun in 2014. The world's technological capacity to receive information through one-way broadcast networks was 432 exabytes of (optimally compressed) information in 1986, 715 (optimally compressed) exabytes in 1993, 1.2 (optimally compressed) zettabytes in 2000, and 1.9 zettabytes in 2007.[15] The world's effective capacity to exchange information through two-way telecommunication networks was 281 petabytes of (optimally compressed) information in 1986, 471 petabytes in 1993, 2.2 (optimally compressed) exabytes in 2000, 65 (optimally compressed) exabytes in 2007,[15] and some 100 exabytes in 2014.[17] The world's technological capacity to compute information with humanly guided general-purpose computers grew from 3.0 × 10^8 MIPS in 1986, to 6.4 x 10^12 MIPS in 2007.[15]

Sector in the OECD

[edit]

The following is a list of OECD countries by share of ICT sector in total value added in 2013.[18]

Rank Country ICT sector in % Relative size
1  South Korea 10.7 10.7
 
2  Japan 7.02 7.02
 
3  Ireland 6.99 6.99
 
4  Sweden 6.82 6.82
 
5  Hungary 6.09 6.09
 
6  United States 5.89 5.89
 
7  India 5.87 5.87
 
8  Czech Republic 5.74 5.74
 
9 Finland 5.60 5.6
 
10  United Kingdom 5.53 5.53
 
11  Estonia 5.33 5.33
 
12  Slovakia 4.87 4.87
 
13  Germany 4.84 4.84
 
14  Luxembourg 4.54 4.54
 
15   Switzerland 4.63 4.63
 
16  France 4.33 4.33
 
17  Slovenia 4.26 4.26
 
18  Denmark 4.06 4.06
 
19  Spain 4.00 4
 
20  Canada 3.86 3.86
 
21  Italy 3.72 3.72
 
22  Belgium 3.72 3.72
 
23  Austria 3.56 3.56
 
24  Portugal 3.43 3.43
 
25  Poland 3.33 3.33
 
26  Norway 3.32 3.32
 
27  Greece 3.31 3.31
 
28  Iceland 2.87 2.87
 
29  Mexico 2.77 2.77
 

ICT Development Index

[edit]

The ICT Development Index ranks and compares the level of ICT use and access across the various countries around the world.[19] In 2014 ITU (International Telecommunication Union) released the latest rankings of the IDI, with Denmark attaining the top spot, followed by South Korea. The top 30 countries in the rankings include most high-income countries where the quality of life is higher than average, which includes countries from Europe and other regions such as "Australia, Bahrain, Canada, Japan, Macao (China), New Zealand, Singapore, and the United States; almost all countries surveyed improved their IDI ranking this year."[20]

The WSIS process and development goals

[edit]

On 21 December 2001, the United Nations General Assembly approved Resolution 56/183, endorsing the holding of the World Summit on the Information Society (WSIS) to discuss the opportunities and challenges facing today's information society.[21] According to this resolution, the General Assembly related the Summit to the United Nations Millennium Declaration's goal of implementing ICT to achieve Millennium Development Goals. It also emphasized a multi-stakeholder approach to achieve these goals, using all stakeholders including civil society and the private sector, in addition to governments.

To help anchor and expand ICT to every habitable part of the world, "2015 is the deadline for achievements of the UN Millennium Development Goals (MDGs), which global leaders agreed upon in the year 2000."[22]

In education

[edit]
Today's society shows the ever-growing computer-centric lifestyle, which includes the rapid influx of computers in the modern classroom.

There is evidence that, to be effective in education, ICT must be fully integrated into the pedagogy. Specifically, when teaching literacy and math, using ICT in combination with Writing to Learn[23][24] produces better results than traditional methods alone or ICT alone.[25] The United Nations Educational, Scientific and Cultural Organisation (UNESCO), a division of the United Nations, has made integrating ICT into education as part of its efforts to ensure equity and access to education. The following, which was taken directly from a UNESCO publication on educational ICT, explains the organization's position on the initiative.

Information and Communication Technology can contribute to universal access to education, equity in education, the delivery of quality learning and teaching, teachers' professional development and more efficient education management, governance, and administration. UNESCO takes a holistic and comprehensive approach to promote ICT in education. Access, inclusion, and quality are among the main challenges they can address. The Organization's Intersectoral Platform for ICT in education focuses on these issues through the joint work of three of its sectors: Communication & Information, Education and Science.[26]

OLPC Laptops at school in Rwanda

Despite the power of computers to enhance and reform teaching and learning practices, improper implementation is a widespread issue beyond the reach of increased funding and technological advances with little evidence that teachers and tutors are properly integrating ICT into everyday learning.[27] Intrinsic barriers such as a belief in more traditional teaching practices and individual attitudes towards computers in education as well as the teachers own comfort with computers and their ability to use them all as result in varying effectiveness in the integration of ICT in the classroom.[28]

Mobile learning for refugees

[edit]

School environments play an important role in facilitating language learning. However, language and literacy barriers are obstacles preventing refugees from accessing and attending school, especially outside camp settings.[29]

Mobile-assisted language learning apps are key tools for language learning. Mobile solutions can provide support for refugees' language and literacy challenges in three main areas: literacy development, foreign language learning and translations. Mobile technology is relevant because communicative practice is a key asset for refugees and immigrants as they immerse themselves in a new language and a new society. Well-designed mobile language learning activities connect refugees with mainstream cultures, helping them learn in authentic contexts.[29]

Developing countries

[edit]

Africa

[edit]
A computer screen at the front of a room of policymakers shows the Mobile Learning Week logo
Representatives meet for a policy forum on M-Learning at UNESCO's Mobile Learning Week in March 2017.

ICT has been employed as an educational enhancement in Sub-Saharan Africa since the 1960s. Beginning with television and radio, it extended the reach of education from the classroom to the living room, and to geographical areas that had been beyond the reach of the traditional classroom. As the technology evolved and became more widely used, efforts in Sub-Saharan Africa were also expanded. In the 1990s a massive effort to push computer hardware and software into schools was undertaken, with the goal of familiarizing both students and teachers with computers in the classroom. Since then, multiple projects have endeavoured to continue the expansion of ICT's reach in the region, including the One Laptop Per Child (OLPC) project, which by 2015 had distributed over 2.4 million laptops to nearly two million students and teachers.[30]

The inclusion of ICT in the classroom, often referred to as M-Learning, has expanded the reach of educators and improved their ability to track student progress in Sub-Saharan Africa. In particular, the mobile phone has been most important in this effort. Mobile phone use is widespread, and mobile networks cover a wider area than internet networks in the region. The devices are familiar to student, teacher, and parent, and allow increased communication and access to educational materials. In addition to benefits for students, M-learning also offers the opportunity for better teacher training, which leads to a more consistent curriculum across the educational service area. In 2011, UNESCO started a yearly symposium called Mobile Learning Week with the purpose of gathering stakeholders to discuss the M-learning initiative.[30]

Implementation is not without its challenges. While mobile phone and internet use are increasing much more rapidly in Sub-Saharan Africa than in other developing countries, the progress is still slow compared to the rest of the developed world, with smartphone penetration only expected to reach 20% by 2017.[30] Additionally, there are gender, social, and geo-political barriers to educational access, and the severity of these barriers vary greatly by country. Overall, 29.6 million children in Sub-Saharan Africa were not in school in the year 2012, owing not just to the geographical divide, but also to political instability, the importance of social origins, social structure, and gender inequality. Once in school, students also face barriers to quality education, such as teacher competency, training and preparedness, access to educational materials, and lack of information management.[30]

Growth in modern society and developing countries

[edit]

In modern society, ICT is ever-present, with over three billion people having access to the Internet.[31] With approximately 8 out of 10 Internet users owning a smartphone, information and data are increasing by leaps and bounds.[32] This rapid growth, especially in developing countries, has led ICT to become a keystone of everyday life, in which life without some facet of technology renders most of clerical, work and routine tasks dysfunctional.

The most recent authoritative data, released in 2014, shows "that Internet use continues to grow steadily, at 6.6% globally in 2014 (3.3% in developed countries, 8.7% in the developing world); the number of Internet users in developing countries has doubled in five years (2009–2014), with two-thirds of all people online now living in the developing world."[20]

Limitations

[edit]

However, hurdles are still large. "Of the 4.3 billion people not yet using the Internet, 90% live in developing countries. In the world's 42 Least Connected Countries (LCCs), which are home to 2.5 billion people, access to ICTs remains largely out of reach, particularly for these countries' large rural populations."[33] ICT has yet to penetrate the remote areas of some countries, with many developing countries dearth of any type of Internet. This also includes the availability of telephone lines, particularly the availability of cellular coverage, and other forms of electronic transmission of data. The latest "Measuring the Information Society Report" cautiously stated that the increase in the aforementioned cellular data coverage is ostensible, as "many users have multiple subscriptions, with global growth figures sometimes translating into little real improvement in the level of connectivity of those at the very bottom of the pyramid; an estimated 450 million people worldwide live in places which are still out of reach of mobile cellular service."[31]

Favourably, the gap between the access to the Internet and mobile coverage has decreased substantially in the last fifteen years, in which "2015 was the deadline for achievements of the UN Millennium Development Goals (MDGs), which global leaders agreed upon in the year 2000, and the new data show ICT progress and highlight remaining gaps."[22] ICT continues to take on a new form, with nanotechnology set to usher in a new wave of ICT electronics and gadgets. ICT newest editions into the modern electronic world include smartwatches, such as the Apple Watch, smart wristbands such as the Nike+ FuelBand, and smart TVs such as Google TV. With desktops soon becoming part of a bygone era, and laptops becoming the preferred method of computing, ICT continues to insinuate and alter itself in the ever-changing globe.

Information communication technologies play a role in facilitating accelerated pluralism in new social movements today. The internet according to Bruce Bimber is "accelerating the process of issue group formation and action"[34] and coined the term accelerated pluralism to explain this new phenomena. ICTs are tools for "enabling social movement leaders and empowering dictators"[35] in effect promoting societal change. ICTs can be used to garner grassroots support for a cause due to the internet allowing for political discourse and direct interventions with state policy[36] as well as change the way complaints from the populace are handled by governments. Furthermore, ICTs in a household are associated with women rejecting justifications for intimate partner violence. According to a study published in 2017, this is likely because "access to ICTs exposes women to different ways of life and different notions about women's role in society and the household, especially in culturally conservative regions where traditional gender expectations contrast observed alternatives."[37]

In health care

[edit]

In science

[edit]

Applications of ICTs in science, research and development, and academia include:

Models of access

[edit]

Scholar Mark Warschauer defines a "models of access" framework for analyzing ICT accessibility. In the second chapter of his book, Technology and Social Inclusion: Rethinking the Digital Divide, he describes three models of access to ICTs: devices, conduits, and literacy.[40] Devices and conduits are the most common descriptors for access to ICTs, but they are insufficient for meaningful access to ICTs without third model of access, literacy.[40] Combined, these three models roughly incorporate all twelve of the criteria of "Real Access" to ICT use, conceptualized by a non-profit organization called Bridges.org in 2005:[41]

  1. Physical access to technology
  2. Appropriateness of technology
  3. Affordability of technology and technology use
  4. Human capacity and training
  5. Locally relevant content, applications, and services
  6. Integration into daily routines
  7. Socio-cultural factors
  8. Trust in technology
  9. Local economic environment
  10. Macro-economic environment
  11. Legal and regulatory framework
  12. Political will and public support

Devices

[edit]

The most straightforward model of access for ICT in Mark Warschauer's theory is devices.[40] In this model, access is defined most simply as the ownership of a device such as a phone or computer.[40] Warschauer identifies many flaws with this model, including its inability to account for additional costs of ownership such as software, access to telecommunications, knowledge gaps surrounding computer use, and the role of government regulation in some countries.[40] Therefore, Warschauer argues that considering only devices understates the magnitude of digital inequality. For example, the Pew Research Center notes that 96% of Americans own a smartphone,[42] although most scholars in this field would contend that comprehensive access to ICT in the United States is likely much lower than that.

Conduits

[edit]

A conduit requires a connection to a supply line, which for ICT could be a telephone line or Internet line. Accessing the supply requires investment in the proper infrastructure from a commercial company or local government and recurring payments from the user once the line is set up. For this reason, conduits usually divide people based on their geographic locations. As a Pew Research Center poll reports, Americans in rural areas are 12% less likely to have broadband access than other Americans, thereby making them less likely to own the devices.[43] Additionally, these costs can be prohibitive to lower-income families accessing ICTs. These difficulties have led to a shift toward mobile technology; fewer people are purchasing broadband connection and are instead relying on their smartphones for Internet access, which can be found for free at public places such as libraries.[44] Indeed, smartphones are on the rise, with 37% of Americans using smartphones as their primary medium for internet access[44] and 96% of Americans owning a smartphone.[42]

Literacy

[edit]
Youth and adults with ICT skills, 2017

In 1981, Sylvia Scribner and Michael Cole studied a tribe in Liberia, the Vai people, who have their own local script. Since about half of those literate in Vai have never had formal schooling, Scribner and Cole were able to test more than 1,000 subjects to measure the mental capabilities of literates over non-literates.[45] This research, which they laid out in their book The Psychology of Literacy,[45] allowed them to study whether the literacy divide exists at the individual level. Warschauer applied their literacy research to ICT literacy as part of his model of ICT access.

Scribner and Cole found no generalizable cognitive benefits from Vai literacy; instead, individual differences on cognitive tasks were due to other factors, like schooling or living environment.[45] The results suggested that there is "no single construct of literacy that divides people into two cognitive camps; [...] rather, there are gradations and types of literacies, with a range of benefits closely related to the specific functions of literacy practices."[40] Furthermore, literacy and social development are intertwined, and the literacy divide does not exist on the individual level.

Warschauer draws on Scribner and Cole's research to argue that ICT literacy functions similarly to literacy acquisition, as they both require resources rather than a narrow cognitive skill. Conclusions about literacy serve as the basis for a theory of the digital divide and ICT access, as detailed below:

There is not just one type of ICT access, but many types. The meaning and value of access varies in particular social contexts. Access exists in gradations rather than in a bipolar opposition. Computer and Internet use brings no automatic benefit outside of its particular functions. ICT use is a social practice, involving access to physical artifacts, content, skills, and social support. And acquisition of ICT access is a matter not only of education but also of power.[40]

Therefore, Warschauer concludes that access to ICT cannot rest on devices or conduits alone; it must also engage physical, digital, human, and social resources.[40] Each of these categories of resources have iterative relations with ICT use. If ICT is used well, it can promote these resources, but if it is used poorly, it can contribute to a cycle of underdevelopment and exclusion.[45]

Environmental impact

[edit]

Progress during the century

[edit]

In the early 21st century a rapid development of ICT services and electronical devices took place, in which the internet servers multiplied by a factor of 1000 to 395 million and its still increasing. This increase can be explained by Moore's law, which states, that the development of ICT increases every year by 16–20%, so it will double in numbers every four to five years.[46] Alongside this development and the high investments in increasing demand for ICT capable products, a high environmental impact came with it. Software and Hardware development as well as production causing already in 2008 the same amount of CO2 emissions as global air travels.[46]

There are two sides of ICT, the positive environmental possibilities and the shadow side. On the positive side, studies proved, that for instance in the OECD countries a reduction of 0.235% energy use is caused by an increase in ICT capital by 1%.[47] On the other side the more digitization is happening, the more energy is consumed, that means for OECD countries 1% increase in internet users causes a raise of 0.026% electricity consumption per capita and for emerging countries the impact is more than 4 times as high.

Currently the scientific forecasts are showing an increase up to 30700 TWh in 2030 which is 20 times more than it was in 2010.[47]

Implication

[edit]

To tackle the environmental issues of ICT, the EU commission plans proper monitoring and reporting of the GHG emissions of different ICT platforms, countries and infrastructure in general. Further the establishment of international norms for reporting and compliance are promoted to foster transparency in this sector.[48]

Moreover it is suggested by scientists to make more ICT investments to exploit the potentials of ICT to alleviate CO2 emissions in general, and to implement a more effective coordination of ICT, energy and growth policies.[49] Consequently, applying the principle of the coase theorem makes sense. It recommends to make investments there, where the marginal avoidance costs of emissions are the lowest, therefore in the developing countries with comparatively lower technological standards and policies as high-tech countries. With these measures, ICT can reduce environmental damage from economic growth and energy consumption by facilitating communication and infrastructure.

In problem-solving

[edit]

ICTs could also be used to address environmental issues, including climate change, in various ways, including ways beyond education.[50][51][52]

See also

[edit]

References

[edit]
  1. ^ Murray, James (2011-12-18). "Cloud network architecture and ICT - Modern Network Architecture". TechTarget =ITKnowledgeExchange. Archived from the original on 2017-09-20. Retrieved 2013-08-18.
  2. ^ Ozdamli, Fezile; Ozdal, Hasan (May 2015). "Life-long Learning Competence Perceptions of the Teachers and Abilities in Using Information-Communication .Technologies". Procedia - Social and Behavioral Sciences. 182: 718–725. doi:10.1016/j.access=free.
  3. ^ "ICT - What is it?". www.tutor2u.net. Archived from the original on 2015-11-02. Retrieved 2015-09-01.
  4. ^ "IEEE-CS Adopts Skills Framework for the Information Age • IEEE Computer Society". www.computer.org. Retrieved 14 March 2018.[dead link]
  5. ^ William Melody et al., Information and Communication Technologies: Social Sciences Research and Training: A Report by the ESRC Programme on Information and Communication Technologies, ISBN 0-86226-179-1, 1986. Roger Silverstone et al., "Listening to a long conversation: an ethnographic approach to the study of information and communication technologies in the home", Cultural Studies, 5(2), pages 204–227, 1991.
  6. ^ The Independent ICT in Schools Commission, Information and Communications Technology in UK Schools: An Independent Inquiry, 1997. Impact noted in Jim Kelly, What the Web is Doing for Schools Archived 2011-07-11 at the Wayback Machine, Financial Times, 2000.
  7. ^ "Shut down or restart? The way forward for computing in UK schools" (PDF). Royal Society. January 2012. p. 18. Retrieved 2024-12-14.
  8. ^ Department for Education, "National curriculum in England: computing programmes of study".
  9. ^ United Nations Office of Information and Communications Technology, About Archived 2018-02-04 at the Wayback Machine
  10. ^ "IDC - Global ICT Spending - 2018 - $3.8T". IDC: The premier global market intelligence company. Retrieved 2018-09-24.
  11. ^ "IDC - Global ICT Spending - Forecast 2018 – 2022". IDC: The premier global market intelligence company. Retrieved 2018-09-24.
  12. ^ "Federal Information Technology FY2014 Budget Priorities" (PDF). obamawhitehouse.archives.gov.
  13. ^ a b "IT Costs – The Costs, Growth And Financial Risk Of Software Assets". OMT-CO Operations Management Technology Consulting GmbH. Archived from the original on 12 August 2013. Retrieved 26 June 2011.
  14. ^ "IDC - Global ICT Spending - Forecast 2018 – 2022". IDC: The premier global market intelligence company. Retrieved 2018-09-24.
  15. ^ a b c d "The World's Technological Capacity to Store, Communicate, and Compute Information", Martin Hilbert and Priscila López (2011), Science, 332(6025), 60–65; see also "free access to the study" and "video animation".
  16. ^ Gillings, Michael R; Hilbert, Martin; Kemp, Darrell J (2016). "Information in the Biosphere: Biological and Digital Worlds". Trends in Ecology & Evolution. 31 (3): 180–189. Bibcode:2016TEcoE..31..180G. doi:10.1016/j.tree.2015.12.013. PMID 26777788. S2CID 3561873.
  17. ^ Hilbert, Martin (2016). "The bad news is that the digital access divide is here to stay: Domestically installed bandwidths among 172 countries for 1986–2014". Telecommunications Policy. 40 (6): 567–581. doi:10.1016/j.telpol.2016.01.006.
  18. ^ Figure 1.9 Share of ICT sector in total value added, 2013, doi:10.1787/888933224163
  19. ^ "Measuring the Information Society" (PDF). International Telecommunication Union. 2011. Retrieved 25 July 2013.
  20. ^ a b "ITU releases annual global ICT data and ICT Development Index country ranking - librarylearningspace.com". 2014-11-30. Retrieved 2015-09-01.
  21. ^ "Basic information : about was". International Telecommunication Union. 17 January 2006. Retrieved 26 May 2012.
  22. ^ a b "ICT Facts and Figures – The world in 2015". ITU. Retrieved 2015-09-01.
  23. ^ "What is Writing to Learn, WAC Clearinghouse".
  24. ^ "Evidence for How Writing Can Improve Reading, Carnegie.Org 2010" (PDF).
  25. ^ Genlott, Annika Agélii; Grönlund, Åke (August 2016). "Closing the gaps – Improving literacy and mathematics by ict-enhanced collaboration". Computers & Education. 99: 68–80. doi:10.1016/j.compedu.2016.04.004.
  26. ^ "ICT in Education". Unesco. Retrieved 10 March 2016.
  27. ^ Birt, Jacqueline; Safari, Maryam; de Castro, Vincent Bicudo (2023-03-20). "Critical analysis of integration of ICT and data analytics into the accounting curriculum: A multidimensional perspective". Accounting & Finance. 63 (4): 4037–4063. doi:10.1111/acfi.13084. ISSN 0810-5391. S2CID 257675501.
  28. ^ Blackwell, C.K., Lauricella, A.R. and Wartella, E., 2014. Factors influencing digital technology use in early childhood education. Computers & Education, 77, pp.82-90.
  29. ^ a b UNESCO (2018). A Lifeline to learning: leveraging mobile technology to support education for refugees. UNESCO. ISBN 978-92-3-100262-5.
  30. ^ a b c d Agence Française de Développement (February 2015). "Digital services for education in Africa" (PDF). unesco.org. Retrieved 19 May 2018.
  31. ^ a b "ITU releases annual global ICT data and ICT Development Index country rankings". www.itu.int. Retrieved 2015-09-01.
  32. ^ "Survey: 1 In 6 Internet Users Own A Smartwatch Or Fitness Tracker". ARC. Retrieved 2015-09-01.
  33. ^ "ITU releases annual global ICT data and ICT Development Index country rankings". www.itu.int. Retrieved 2015-09-01.
  34. ^ Bimber, Bruce (1998-01-01). "The Internet and Political Transformation: Populism, Community, and Accelerated Pluralism". Polity. 31 (1): 133–160. doi:10.2307/3235370. JSTOR 3235370. S2CID 145159285.
  35. ^ Hussain, Muzammil M.; Howard, Philip N. (2013-03-01). "What Best Explains Successful Protest Cascades? ICTs and the Fuzzy Causes of the Arab Spring". International Studies Review. 15 (1): 48–66. doi:10.1111/misr.12020. hdl:2027.42/97489. ISSN 1521-9488.
  36. ^ Kirsh, David (2001). "The Context of Work". Human Computer Interaction. 16 (2–4): 305–322. doi:10.1207/S15327051HCI16234_12. S2CID 28915179.
  37. ^ Cardoso LG, Sorenson SB. Violence against women and household ownership of radios, computers, and phones in 20 countries. American Journal of Public Health. 2017; 107(7):1175–1181.
  38. ^ Novak, Matt. "Telemedicine Predicted in 1925". Smithsonian Magazine. Retrieved 27 January 2022.
  39. ^ Albritton, Jordan; Ortiz, Alexa; Wines, Roberta; Booth, Graham; DiBello, Michael; Brown, Stephen; Gartlehner, Gerald; Crotty, Karen (7 December 2021). "Video Teleconferencing for Disease Prevention, Diagnosis, and Treatment" (PDF). Annals of Internal Medicine. 175 (2): 256–266. doi:10.7326/m21-3511. ISSN 0003-4819. PMID 34871056. S2CID 244923066.
  40. ^ a b c d e f g h Warschauer, Mark (2004). Technology and Social Inclusion. Cambridge, Massachusetts: The MIT Press. pp. 39–49. ISBN 0-262-23224-3.
  41. ^ "The Real Access / Real Impact framework for improving the way that ICT is used in development" (PDF). 26 December 2005.
  42. ^ a b "Mobile Fact Sheet". Pew Research Center. 13 November 2024.
  43. ^ Perrin, Andrew (19 August 2021). "Digital gap between rural and nonrural America persists". Pew Research Center.
  44. ^ a b Anderson, Monica (13 June 2019). "Mobile Technology and Home Broadband 2019". Pew Research Center.
  45. ^ a b c d Scribner and Cole, Sylvia and Michael (1981). The Psychology of Literacy. ISBN 9780674433014.
  46. ^ a b Gerhard, Fettweis; Zimmermann, Ernesto (2008). "ITC Energy Consumption - Trends and Challenges". The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) – via ResearchGate.
  47. ^ a b Lange, Steffen; Pohl, Johanna; Santarius, Tilman (2020-10-01). "Digitalization and energy consumption. Does ICT reduce energy demand?". Ecological Economics. 176: 106760. Bibcode:2020EcoEc.17606760L. doi:10.1016/j.ecolecon.2020.106760. ISSN 0921-8009. S2CID 224947774.
  48. ^ "Rolling Plan for ICT standardization 2021". Joinup. European Commission. 2021. Retrieved 2022-01-08.
  49. ^ Lu, Wen-Cheng (2018-12-01). "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries". Mitigation and Adaptation Strategies for Global Change. 23 (8): 1351–1365. Bibcode:2018MASGC..23.1351L. doi:10.1007/s11027-018-9787-y. ISSN 1573-1596. S2CID 158412820.
  50. ^ Fox, Evan Michael (2019). "Mobile Technology: A Tool to Increase Global Competency Among Higher Education Students". The International Review of Research in Open and Distributed Learning. 20 (2). doi:10.19173/irrodl.v20i2.3961. ISSN 1492-3831. S2CID 242492985.
  51. ^ "Digitalisation for a circular economy: A driver for European Green Deal". EPC. Archived from the original on Oct 8, 2023.
  52. ^ Charfeddine, Lanouar; Umlai, Mohamed (2023). "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022". Renewable and Sustainable Energy Reviews. 184: 113482. Bibcode:2023RSERv.18413482C. doi:10.1016/j.rser.2023.113482.

Sources

[edit]

Further reading

[edit]
[edit]

 

Frequently Asked Questions

IT providers enable remote work by setting up secure access to company systems, deploying VPNs, cloud apps, and communication tools. They also ensure devices are protected and provide remote support when employees face technical issues at home.

SUPA Networks  |  ASN Telecom  |  Vision Network  |  Lynham Networks

IT consulting helps you make informed decisions about technology strategies, software implementation, cybersecurity, and infrastructure planning. Consultants assess your current setup, recommend improvements, and guide digital transformation to align IT systems with your business goals.

SUPA Networks  |  ASN Telecom  |  Vision Network  |  Lynham Networks

Yes, IT service providers implement firewalls, antivirus software, regular patching, and network monitoring to defend against cyber threats. They also offer data backups, disaster recovery plans, and user access controls to ensure your business remains protected.

SUPA Networks  |  ASN Telecom  |  Vision Network  |  Lynham Networks

Cloud computing allows you to store, manage, and access data and applications over the internet rather than local servers. It’s scalable, cost-effective, and ideal for remote work, backup solutions, and collaboration tools like Microsoft 365 and Google Workspace

SUPA Networks  |  ASN Telecom  |  Vision Network  |  Lynham Networks

In-house IT is handled by internal staff, while outsourced IT involves hiring a third-party company. Outsourcing often reduces costs, provides 24/7 support, and gives you access to broader expertise without managing a full-time team.

SUPA Networks  |  ASN Telecom  |  Vision Network  |  Lynham Networks